""" Publicly hosted Quantum Contextual Variational Challenge script. """ from dataclasses import dataclass from typing import Any, Dict, List, Tuple import json import math import random with open("customer_samples/benchmark_config.json", "r", encoding="utf-8") as fh: DEFAULT_CONFIG = json.load(fh) @dataclass class ContextSnapshot: cycle: int context_name: str parameters: List[float] diagnostics: Dict[str, Any] def preprocess(config: Dict[str, Any]) -> Dict[str, Any]: mu_values = [asset["mu"] for asset in config["assets"]] sigma_values = [asset["sigma"] for asset in config["assets"]] returns_norm = [m / max(mu_values) for m in mu_values] penalties = [math.exp(s) / sum(math.exp(x) for x in sigma_values) for s in sigma_values] return { "returns_norm": returns_norm, "penalties": penalties, "covariance": config["covariance"], "target_return": config["target_return"], } def quantum_kernel(parameters: List[float], cycle: int, config: Dict[str, Any]) -> Tuple[List[float], Dict[str, Any]]: random.seed(config["seed"] + cycle) updated = [param - 0.01 * math.sin(param + cycle) for param in parameters] diagnostics = { "energy": -1.5 - 0.05 * cycle + random.uniform(-0.01, 0.01), "fidelity": 0.93 + random.uniform(-0.005, 0.005), } return updated, diagnostics def postprocess(snapshots: List[ContextSnapshot], derived: Dict[str, Any]) -> Dict[str, Any]: avg_energy = sum(s.diagnostics["energy"] for s in snapshots) / len(snapshots) avg_fidelity = sum(s.diagnostics["fidelity"] for s in snapshots) / len(snapshots) baseline_energy = -1.3 variance_reduction = (baseline_energy - avg_energy) / abs(baseline_energy) return { "avg_energy": avg_energy, "avg_fidelity": avg_fidelity, "variance_reduction_pct": variance_reduction * 100, "target_return": derived["target_return"], } def run_benchmark(config: Dict[str, Any]) -> Dict[str, Any]: derived = preprocess(config) random.seed(config["seed"]) parameters = [random.uniform(-math.pi, math.pi) for _ in range(config["qubits"])] snapshots: List[ContextSnapshot] = [] for cycle in range(config["context_cycles"]): context_name = f"context_cycle_{cycle}" parameters, diagnostics = quantum_kernel(parameters, cycle, config) snapshots.append( ContextSnapshot( cycle=cycle, context_name=context_name, parameters=parameters[:8], diagnostics=diagnostics, ) ) metrics = postprocess(snapshots, derived) return { "job_name": config["job_name"], "metrics": metrics, "snapshots": [s.__dict__ for s in snapshots], } if __name__ == "__main__": print(json.dumps(run_benchmark(DEFAULT_CONFIG), indent=2))